894 research outputs found

    Flexible quantum circuits using scalable continuous-variable cluster states

    Get PDF
    We show that measurement-based quantum computation on scalable continuous-variable (CV) cluster states admits more quantum-circuit flexibility and compactness than similar protocols for standard square-lattice CV cluster states. This advantage is a direct result of the macronode structure of these states---that is, a lattice structure in which each graph node actually consists of several physical modes. These extra modes provide additional measurement degrees of freedom at each graph location, which can be used to manipulate the flow and processing of quantum information more robustly and with additional flexibility that is not available on an ordinary lattice.Comment: (v2) consistent with published version; (v1) 11 pages (9 figures

    Randomized benchmarking in measurement-based quantum computing

    Get PDF
    Randomized benchmarking is routinely used as an efficient method for characterizing the performance of sets of elementary logic gates in small quantum devices. In the measurement-based model of quantum computation, logic gates are implemented via single-site measurements on a fixed universal resource state. Here we adapt the randomized benchmarking protocol for a single qubit to a linear cluster state computation, which provides partial, yet efficient characterization of the noise associated with the target gate set. Applying randomized benchmarking to measurement-based quantum computation exhibits an interesting interplay between the inherent randomness associated with logic gates in the measurement-based model and the random gate sequences used in benchmarking. We consider two different approaches: the first makes use of the standard single-qubit Clifford group, while the second uses recently introduced (non-Clifford) measurement-based 2-designs, which harness inherent randomness to implement gate sequences.Comment: 10 pages, 4 figures, comments welcome; v2 published versio

    Universal quantum computation with temporal-mode bilayer square lattices

    Get PDF
    We propose an experimental design for universal continuous-variable quantum computation that incorporates recent innovations in linear-optics-based continuous-variable cluster state generation and cubic-phase gate teleportation. The first ingredient is a protocol for generating the bilayer-square-lattice cluster state (a universal resource state) with temporal modes of light. With this state, measurement-based implementation of Gaussian unitary gates requires only homodyne detection. Second, we describe a measurement device that implements an adaptive cubic-phase gate, up to a random phase-space displacement. It requires a two-step sequence of homodyne measurements and consumes a (non-Gaussian) cubic-phase state.Comment: (v2) 14 pages, 5 figures, consistent with published version; (v1) 13 pages, 5 figure

    Observational Constraints on f(T)f(T) gravity from varying fundamental constants

    Full text link
    We use observations related to the variation of fundamental constants, in order to impose constraints on the viable and most used f(T)f(T) gravity models. In particular, for the fine-structure constant we use direct measurements obtained by different spectrographic methods, while for the effective Newton's constant we use a model-dependent reconstruction, using direct observational Hubble parameter data, in order to investigate its temporal evolution. We consider two f(T)f(T) models and we quantify their deviation from Λ\LambdaCDM cosmology through a sole parameter. Our analysis reveals that this parameter can be slightly different from its Λ\LambdaCDM value, however the best-fit value is very close to the Λ\LambdaCDM one. Hence, f(T)f(T) gravity is consistent with observations, nevertheless, as every modified gravity, it may exhibit only small deviations from Λ\LambdaCDM cosmology, a feature that must be taken into account in any f(T)f(T) model-building.Comment: 9 pages, 6 figures, 3 Tables, version published in Eur.Phys.J.

    Noise analysis of single-qumode Gaussian operations using continuous-variable cluster states

    Get PDF
    We consider measurement-based quantum computation that uses scalable continuous-variable cluster states with a one-dimensional topology. The physical resource, known here as the dual-rail quantum wire, can be generated using temporally multiplexed offline squeezing and linear optics or by using a single optical parametric oscillator. We focus on an important class of quantum gates, specifically Gaussian unitaries that act on single modes, which gives universal quantum computation when supplemented with multi-mode operations and photon-counting measurements. The dual-rail wire supports two routes for applying single-qumode Gaussian unitaries: the first is to use traditional one-dimensional quantum-wire cluster-state measurement protocols. The second takes advantage of the dual-rail quantum wire in order to apply unitaries by measuring pairs of qumodes called macronodes. We analyze and compare these methods in terms of the suitability for implementing single-qumode Gaussian measurement-based quantum computation.Comment: 25 pages, 9 figures, more accessible to general audienc

    One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator

    Get PDF
    One-way quantum computing is experimentally appealing because it requires only local measurements on an entangled resource called a cluster state. Record-size, but non-universal, continuous-variable cluster states were recently demonstrated separately in the time and frequency domains. We propose to combine these approaches into a scalable architecture in which a single optical parametric oscillator and simple interferometer entangle up to (3×1033\times 10^3 frequencies) ×\times (unlimited number of temporal modes) into a new and computationally universal continuous-variable cluster state. We introduce a generalized measurement protocol to enable improved computational performance on this new entanglement resource.Comment: (v4) Consistent with published version; (v3) Fixed typo in arXiv abstract, 14 pages, 8 figures; (v2) Supplemental material incorporated into main text, additional explanations added, results unchanged, 14 pages, 8 figures; (v1) 5 pages (3 figures) + 6 pages (5 figures) of supplemental material; submitted for publicatio
    • …
    corecore